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In this paper we establish approximation properties of Cesaro (C, —a)-means
with o € (0, 1) of Walsh—Fourier series. This result allows one to obtain the condi-
tion which is sufficient for the convergence of the means o,“(f, x) to f(x) in the
L?-metric. We also show that this condition cannot be improved in the case p=1.
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1. INTRODUCTION

Let ry(x) be a function defined on [0, 1) by

1, if xe[0,1/2)

y(x+1) = ro(x).
-1, if xe[1/2,1) ot 1) =ra(x)

o =

The Rademacher system is defined by
r,(x) =ry(2"x), n=1, and xe[0,1).

Let wy, wy, ... represent the Walsh functions, ie., wy(x)=1 and if
k=2"+ ... 42" is a positive integer with n, >n, > --- > n, then

wi(x) = 1, (x) -1, (%)

The idea of using products of Rademacher’s functions to define the Walsh
system originated from Paley [6].
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The Walsh-Dirichlet kernel is defined by
n—1
D,(x)= Y w(x).
k=0
Recall that
2", if xe[0,1/2%),

1 0 (x) =
o D) {0, if xe[l/2",1).

Suppose that f is a Lebesgue integrable function on [0,1] and
1-periodic. Then its Walsh—Fourier series is defined by

[ee]

Z (k) wi (),

where

)= [ 1@y wil) e

is called the kth Walsh—Fourier coefficient of function f.
Denote the nth partial sum of the Walsh—Fourier series of the function f

by S, (f, x):
n—1
S,(fox)= 2, fk) we(x).
k=0
The Cesaro (C, a)-means of the Walsh—Fourier series are defined as

a.(f, x)——Z Ay J (k) wi(x),

nk 0
where
AX=1, A;=W, at—1,-2, ...
It is well known that [ 11, Chap. 3]
2 Z A3k,

3) Ar— Ay =AY,
) A~ n’.
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We remind the reader that C,([0,1]) is the collection of functions
f:[0,1) > R that are uniformly continuous from the dyadic topology of
[0, 1) to the usual topology of R, or shortly W-continuous (see [ 7, pp. 9—- 11]).

Let L?([0, 1]) denote the collection of all measurable 1-periodic func-
tions defined on [0, 1], with the following norms

1 1/p
= [ rerax) <0 a<p<eo)

In case p=oo, by L?([0,1]) we mean C,([0,1]), endowed with the
supremum norm.
Let f € L?([0, 1]). The expression

(9, ), = Sup IFC-ehm)—=1Cl,

is called the dyadic modulus of continuity, where @ denotes dyadic addi-
tion [3, Chap. 1].

The problems of summability of Cesaro means of positive order for
Walsh—Fourier series were studied in [ 1, 8].

Tevzadze [9] has studied the uniform convergence of Cesaro means of
negative order of Walsh—Fourier series. In particular, in terms of moduli of
continuity and variation of function f € C,([0, 1]) he has proved the cri-
terion for the uniform summability by the Cesaro method of negative order
of Fourier series with respect to the Walsh system.

In [4, 5] the author proved conditions sufficient for the convergence
of Cesaro means of negative order of Walsh-Fourier series in spaces
L7([0,1]),1<p< 0.

In [4, 5, 9] the results were established without estimation of approxi-
mation.

In his monography [10, Part 1, Chap. 4] Zhizhiashvili investigated the
behavior of Cesaro means of negative order for trigonometric Fourier
series in detail. In this paper we study analogical questions in case of the
Walsh system.

THEOREM 1. Let f(x) belong to L?([0,1]) for some pe[l, 0] and
a € (0, 1). Then for any 2 < n < 2¥*1 (k, n e N) the inequality

lo* ()=l <ep. 0 { 2°01/27, ), + T 20172, 1), |

holds true.
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The following corollary is well known. For p=o0, see [9] and for
pe|l, o),see[4,5].

CoOROLLARY 1. Let f(x) belong to L*[(0,1)] for some pe[1, o] and
let

2*0(1/25,f),-»0 as koo (0<a<l).
Then
lo,*()—=fl,»0 as n—oo.
In case p = oo the sharpness of Corollary 1 has been proved by Tevzadze

[9]. The following theorem shows that Corollary 1 cannot be improved in
case p = 1. In particular, we prove the following

THEOREM 2. For every a€ (0, 1) there exists a function f, e L'([0,1])
for which

(9, fo); = 0(3)
and

PTI;) o (fo)— folly <O.

COROLLARY 2. Let ae (0, 1). Then for every g < 1/(1—a) there exists a
function f, € LY([0, 1]) for which

Im oy (fo) = folli >0

2. AUXILIARY RESULTS

Lemma 1[2]. Letay, ..., a, be real numbers. Then

11 c " 1/2
- dx<— a2> s
2l (Z

where c is an absolute constant.

n

Z oy Dy(x)

k=1

LemMma 2 [4]. Let f e L?([0, 1]) for some pe[1, +00]. Then for every
o € (0, 1) the following estimations hold
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2k_1

W, (WL (- @u)—f(- )]du

2k1

<e(p, ) (1/2%71, 1), 27,

aeW WL (- @ u)—f(-)] du

<e(p, @) o(1/25, f), 2%,

where 28 < n < 2%+,

LemMa 3[9]. Ifae(0,1)and p=2" then

2" -1
sign < Y A;“vwv(t)> = sign wym_, (1), te(0,1).

v=0

LemMmaA 4 [3, Chap. 10]. Letl<p<g<owand f € L*([0, 1]). If

> nra(l/n, ),1<o0,

then f € LY[0, 1]).

LemMma 5. Let feL?([0,1]) for some pe[l, +oo]. Then for every
o € (0, 1) the following estimation holds

[, X ArmrsC ew-r()ldu

<c(p, ) z 2 k(1/2", f),,

where 2F < n < 2%+,

Proof. Applying Abel’s transformation, from (3) we get

2k1

® = j z A4, OLC @) £ du|

nsv- Wy WL @ u)— ()] du




14 USHANGI GOGINAVA

1 r
<=l Z A5 DL @)= f()] du
1
o |, At D@L C @w—f () du)
=I+1I

1
A"
1

© T==| [} T ¥ A5 DL @w—f()]du

[S 5 A DslC 80— ()] du

IS 45 DL @ =1
=1L +1,.

From the generalized Minkowski inequality, and by (1) and (4) we have

2k—1

0 1P [T e 0= fO)l, du= 01 /27, 1)),
1 - 1/2"
® L 52Ul [ ew-sOl, de

“k—2 (l/zr’ f)p o k-2 .
-0( %, oyt ) =0 g Z o0/,

r=0

=0 <kf 2*ey(1/2", f)p>.

r=0

Since
)] D, »(u) = Dy (u) +wy(u) D,(u),

for I,, we write

k-2 2"-1
10) <= j Y X A5k D we (- ©w)—f()] du
1 | k=221
t ) 2T A D@ @w— ()] du

=111 +112-
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The estimation of I,, is analogous to the estimation of 7, and we have

(11) I, =O<kz_:2 2"kw(1/2’,f)p>.

r=1

For I,, we write

(12) hs—= Z

2"-1 (+1)/2" 2 -1

e A5y D) wyr ()]

S ouw—f(-)]du

1 k=2 2"—1 2"-1 Ji a+1)/2"
A—KX 1 D .
An rzl IZO vzl - <2 >‘[l/2r W2 (u)

f(-@uw)—f(-)]du

Since
. 21 2[+1
1, if ue [F,F>
wyr(u) =
’ . 2U+1 2A+2
B BT

and t =u® 1/2""! is a one-to-one mapping of [2//2"*!, (2[+1)/2"*") onto
[Q2I+1)/27+1, (21+2)/2""), we have

I+1)/2"
13) L/z, wy (W[ f(x ®u)— f(x)] du

@+1)/2"+!

- [f(x@u) f<x®u®2r1+l>]du.

2[/21+1

After substituting (13) in (12) we obtain by (4) and Lemma 1 that

1 2"—1 2"-1 I
T Y 2 Ay D, <2>

nlOvl

k-2
(14) Iy < )
r=1

@2+1)/2"+1
dl

par [f(. @u)—f( Qud 2,1+1>]du )
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1 k=2 27-1]2"-1 /
< A5 D, | =
An r=1 [1=0 v; S 2 ! <2r>
Q@I+1)/2"+1 1
xfmm f(-@u)—f( Dud 2r+1> du
1 k=2 2"—12"-1 l QI+1)/2"+1
< r —a—1 _
\A;“ rzl 60(1/2 9f)p g z An y—2"—1 <2r> f21/2,+1 u
1 k=2 Qren2r+! | 2 -1 o
== L (/2. z | B A DG du
1 k=2 2'—1
<= 2 o/2. ), || T A4 D) du
n =1

r=

k- 2'—1 12
oy, 2001/, ), (T v -1=2)")
—0<Z 2 %w(1/2%, 1), )
Combining (5)—(8), (10), (11), and (14) e receive the proof of Lemma 5. |

3. PROOFS OF MAIN RESULTS

Proof of Theorem 1. 1t is evident that

fl Z A2 w,()[f(x @ u)— f(x)] du

_aj Z A (O (56 ) — ()] d

a,"(f, X)—f(X)=A_a

2k_1

S T AW o w=f ()] du

A—a
b ]l T AL e )= £ (] du
=I1+4+1I+111.

Since

lo.*(fs x) = FCOll, < I, + 1211, + 2111 .
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From Lemma 2 and Lemma 5 the proof of Theorem 1 is complete. ||

Proof of Theorem 2. We choose a monotonicaly increasing sequence of
positive integers {n, : k > 1} such that

4 (2%, () l—a
15 1)<
() 2( o > 2:(@)
and
(16) me_1+1/a<n, k=2,
where
A" o
c(0) =inf =, ¢,(a) =sup —.
n n n n
Let
So(x) = Z Si(x),
k=1
where
1 2" —1
Ji(x) = P Z w;(x).
j=2"—1
It is evident that f, € L, ([0, 1]).
First we prove that
17) (9, fo)1 = 0(6).

For every 6 > 0 there exists a positive integer k such that
1/2" <6< 1/2™1,

Since w(1/2", £), <2 |f =Sy»(f)ll, (n e N) (see [3, Chap. 10]) we have

18) (6. fih <0 (i fo ), <2Wfo= S s (Sl
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Next we shall prove that g% ( f,) diverges in the metric of L, ([0, 1]).
It is clear that

19 oz (fo) = Soli = llozi (Sl =1 foll

o0

<||a;n°z(fk)u1—§l oz (= Y oz (/= ¥ 1l

s=k+1
Since f,(j)=0,j=0,1,...,2% s=k+1,k+2, ..., we have
(20) oy (fs)=0.
Let/ <k—1. Since
27 for jzw,

=1
! 0, for other j,
we obtain by Lemma 3 that
2"k
Ol =g | T A5t ) 7
J
1 1 2" —1
= 2nloc Z_ AZ”’C ] (X)
j=2"
11 J1%5!
S A 2n10c|: Z Az 2" —jW (X)
2k
2" -1
Z Ay —j J(x)]

11 st
A—a 2n1a[ Z A4 "k—jwj(x) WZ”I—I(X)

M=o

+ ) A;ni_jwj(x)wznlll(x)].
ji=0
Hence

ey [ leA(f, Dl dx

1 1 %! 1
<A 2nlon Z AZ"" JJ‘O wj(x) wz"l_l(x) dx

11 -t 1
Ay 2me Z AZ”’LJ‘L w;(x) wyn-1_y(x) dx

Jj=0
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1 . 2¢,(0) (2% —2m)~* 1

A_“ 2"1“ (Aznk 2M 41 +A2nk_2n1*1+1) < 2 cl(oc) Z*nk“ W
_26@E =2 12" 1
¢, (o) 277 2mr e () 27

From (16) and (21) we obtain

21+°‘c2(oc)kz1 1 <22+°‘c2(oc) 1
ci(w) /= 2™ ci(a) 2m*

@ TR <

It is evident that

4
(23) Z ||f,||1<22 ,,a\
M "2
Since
7G) {2 for j=2m"1,2%—1,
] =
, 0, for other j,

and |igll; > £(j) (je N, ge L'[0, 1]) we have

(24) j |0'2nk(fk, x)| dx > (a'znk(fk))(znk_ 1) _ = zikaA_a 261%.

Owing to (15), (19), (20), (22), (23), and (24) we get

1—a 2°"¢(a) 1 4
lo 3% ( fo) = foll = o(a )_WW_W
l-—a 1-« l—a

Z 0@ 260 20@) "

Theorem 2 is proved. ||

Proof of Corollary 2. Since
l1+g(a—1)>0
and

(9, fo)1 = 0(5"),
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we get

0 0

Y ' lo(/n, fo)17< Z e < %

n=1 —

Then f, € LY[0, 1]) follows from Lemma 4. |
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